This article was downloaded by:

On: 29 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

CRYSTAL AND MOLECULAR STRUCTURE OF TWO INSECTICIDES: AMIDO-O,S-DIMETHYLTHIOPHOSPHATE AND N-ACETAMIDO-O,S-DIMETHYLTHIOPHOSPHATE

Vladimir N. Solovyov^a; Ivan V. Martynov^a; Nile G. Zabirov^b

^a Institute of Physiologically Active Substances, Academy of Sciences USSR, Moscow Region, Chernogolovka ^b Kazan State University, Kazan

To cite this Article Solovyov, Vladimir N., Martynov, Ivan V. and Zabirov, Nile G.(1991) 'CRYSTAL AND MOLECULAR STRUCTURE OF TWO INSECTICIDES: AMIDO-O,S-DIMETHYLTHIOPHOSPHATE AND N-ACETAMIDO-O,S-DIMETHYLTHIOPHOSPHATE', Phosphorus, Sulfur, and Silicon and the Related Elements, 57: 1, 135 — 141

To link to this Article: DOI: 10.1080/10426509108038842

URL: http://dx.doi.org/10.1080/10426509108038842

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

CRYSTAL AND MOLECULAR STRUCTURE OF TWO INSECTICIDES: AMIDO-O,S-DIMETHYLTHIOPHOSPHATE AND N-ACETAMIDO-O,S-DIMETHYLTHIOPHOSPHATE

VLADIMIR N. SOLOVYOV* and IVAN V. MARTYNOV

Institute of Physiologically Active Substances, Academy of Sciences USSR, 142432, Moscow Region, Chernogolovka, USSR

and

NILE G. ZABIROV

Kazan State University, Kazan, 420008, Lenin Street 18, USSR

(Received January 3, 1990; in final form July 9, 1990)

The crystal and molecular structure of title compounds have been determined by means of X-ray analysis. The amido-O,S-dimethylthiophosphate (1) crystallizes in the monoclinic space group $P2_1/n$ with cell dimensions a=5.374(3), b=9.220(4), c=13.847(5) Å and $\beta=101.08(5)^\circ$ at the -100° C. The N-acetamido-O,S-dimethylthiophosphate (2) crystallizes in the monoclinic space group $P2_1/c$ with cell dimensions a=11.547(3), b=8.545(2), c=8.954(5) Å and $\beta=93.03(4)^\circ$. The structures were solved by direct methods and refined by least-squares to R=0.0493(1) and 0.0482(2). The coordination around P of the molecules (1) and (2) is distorted tetrahedrally. Molecules have nearly planar moieties HCSP=O and HNPOC (1), HCSP=O and HCC(O)NHPOC (2) with trans-orientation HCSP, CSP=O and NPOC groups. The angle between these planes is 85.3° (1) and 90.3° (2). There are intermolecular P=O . . . H—N hydrogen bonds in the crystal structures (1) and (2).

Key words: Amidothiophosphates; insecticides; crystal structure.

INTRODUCTION

Compounds of phosphorus are one of the most important and widely used classes of the modern pesticides. Many derivatives of the phosphorous, thiophosphorous, phosphoric, thio- and dithiophosphoric, phosphonic and thiophosphonic acids possess pesticidal properties and have been successfully used in agriculture.¹ The amido-O,S-dimethylthiophosphate (methamidophos²) and N-acetamido-O,S-dimethylthiophosphate (acephate)^{3,4} insecticides are derivatives of thiophosphoric acid. Molecular and crystal structures of the amidothiophosphates are of a definite interest (for example, for understanding structure-activity relations), having been however insufficiently studied. In this paper we report results of the X-ray crystal structure analysis of the methamidophos and acephate.

RESULTS AND DISCUSSION

The molecular structures of amido-O,S-dimethylthiophosphate (1) and N-aceta-mido-O,S-dimethylthiophosphate (2) are shown in Figure 1 with the atom num-

^{*}Author to whom correspondence should be addressed.

FIGURE 1 ORTEPII¹² drawings of (1) and (2). Non-H atoms are displayed as principal ellipses at 30% probability level, H atoms as small spheres of arbitrary size.

bering. Final atomic coordinates and equivalent isotropic thermal factors of (1) and (2) are given in Tables I and II, respectively. Bond lengths and bond angles are listed in Tables III and IV.

The coordination of the P atom in the molecules (1) and (2) is distorted tetrahedrally: the O1=P-O2, O1=P-N1, S-P-N1 angles are increased and the O1-P-S, O2-P-N1, S-P-O2 angles are decreased from the ideal value 109.5°. The P-N bond length of the molecule (1) is sufficiently shorted (1.609(2) Å) although it is known, that in the molecules of amidophosphates the corresponding bond lengths range from 1.61 to 1.71 Å.⁵ The P-N bond length of molecule (2)

TABLE I

Positional parameters (X10⁴, X10³ for H atoms) with estimated standard deviations in parentheses and equivalent isotropic temperature factors (Å²) for non-H atoms of the molecule (1)

	X	Y	٠Z	В
<u>s</u>	5139(2)	6476.2(8)	5828.4(6)	3.31(2)
P	5307(1)	8576.9(7)	6332.6(5)	2.32(1)
O1	7618(4)	9196(2)	6082(2)	3.61(4)
O2	5211(5)	8501(2)	7455(2)	3.47(4)
N1	2809(4)	9528(3)	5935(2)	3.75(5)
Cl	2272(7)	5866(5)	6177(4)	5.97(9)
C2	7082(Ì0)	7691(4)	8124(3)	6.0(1)
H1	140(6)	925(4)	615(2)	3.8(7)
H2	281(7)	988(4)	540(3)	6(1)
H11	99(14)	656(6)	582(S)	11(2)
H12	202(10)	515(6)	592(3)	8(1)
H13	237(7)	604(4)	689(3)	4.7(8)
H21	710(9)	680(5)	807(4)	7(1)
H22	867(8)	792(4)	795(3)	6.0(9)
H23	674	792	875	7

TABLE II

Positional parameters (X10⁴, X10³ for H atoms) with e.s. d'.s in parentheses and equivalent isotropic temperature factors (Å²) for non-H atoms of the molecule (2)

		Y	Z	В
s	2106(1)	6000(2)	2590(1)	5.18(3)
P	3127(1)	4060(1)	2818(1)	3.02(2)
O1	3450(3)	3849(4)	4407(3)	4.01(7)
O2	4167(3)	4247(4)	1754(3)	4.31(7)
O3	1032(3)	2362(4)	3488(3)	4.71(7)
NI	2498(3)	2565(4)	1959(4)	2.86(7)
C1	1730(6)	5971(7)	607(6)	7.0(2)
C2	5101(5)	5331(8)	2153(7)	8.4(2)
C3	1532(3)	1837(5)	2432(5)	3.08(8)
C4	1152(4)	412(6)	1585(6)	4.6(1)
H1	268(2)	234(3)	137(3)	0.3(6)
H11	155(6)	511(10)	16(10)	14(3)
H12	137(4)	662(6)	49(5)	6(1)
H13	245(6)	667(9)	18(7)	11(2)
H21	484(6)	629(9)	146(9)	13(2)
H22	508(7)	586(10)	299(8)	13(2)
H23	593(7)	458(11)	241(9)	15(3)
H41	47(3)	-8(5)	202(4)	3.3(9)
H42	93(5)	47(8)	61(7)	9(2)
H43	169(5)	– 7(8)	160(7)	10(2)

and P=O, P-O, P-S, C-S and C-O bond lengths of molecules (1) and (2) are normal.^{5.6}

In the acetamide fragment of the molecules (2) C3 \Longrightarrow O3 and C3 \Longrightarrow C4 bond lengths are decreased, but N1 \Longrightarrow C3 are increased in comparison to the corresponding bond lengths in the acetamides of the α - and β -modifications for which C \Longrightarrow O 1.286(6),

TABLE III

Bond distance (Å) and angles (°) of molecule (1) with e.s.d'.s
in parentheses

S—P	2.055(1)	N1H2	0.80(4)
S—C 1	1.792(4)	C1-H11	1.00(6)
PO1	1.467(2)	C1—H12	0.75(5)
PO2	1.566(2)	C1—H13	1.00(4)
P-N1	1.609(2)	C2-H21	0.83(4)
O2C2	1.439(4)	C2—H22	0.96(4)
N1—H1	0.90(3)	C2—H23	0.95
P-S-C1	100.9(2)		
S—P—O1	105.69(9)	S-C1-H12	104(4)
S-P-O2	106.70(6)	S-C1-H13	109(2)
S-P-N1	114.7(1)	H11-C1-H12	106(5)
O1—P—02	116.2(1)	H11-C1-H13	107(4)
O1—P—N1	113.3(1)	H12-C1-H13	126(5)
O2—P—N1	100.3(1)	O2C2H21	119(3)
PO2C2	120.7(2)	O2—C2—H22	106(3)
P-N1-H1	116(2)	O2C2H23	104`´
P-N1-H2	113(2)	H21—C2—H22	100(4)
H1-N1-H2	124(2)	H21-C2-H23	108(3)
S—C1—H11	102(4)	H22—C2—H23	121

TABLE IV

Bond distances (Å) and angles (°) of (2) with e.s.d'.s in parentheses

	<u> </u>		
S—P	2.038(2)	C1—H12	0.70(6)
SC1	1.805(7)	C1—H13	1.11(8)
P01	1.463(3)	C2—H21	1.06(9)
PO2	1.580(3)	C2—H22	0.87(9)
P-N1	1.641(4)	C2—H23	1.17(10)
O2—C2	1.452(6)	C3—C4	1.488(6)
O3C3	1.219(4)	C4—H41	0.99(4)
N1—C3	1.365(5)	C4—H42	0.89(7)
N1—H1	0.61(3)	C4—H43	0.75(7)
C1-H11	0.86(9)		` ,
P-S-C1	101.3(3)	H12-C1-H13	89(6)
S-P-O1	108.3(1)	O2—C2—H21	100(5)
S—P—O2	108.2(1)	O2C2H22	119(6)
SPN1	110.3(1)	O2—C2—H23	107(5)
O1—P—O2	115.9(2)	H21—C2—H22	95(7)
O1PN1	116.4(2)	H21—C2—H23	138(7)
O2PN1	97.3(2)	H22C2H23	100(7)
PO2C2	119.6(4)	O3—C3—N1	120.1(4)
P-N1-C3	123.9(3)	O 3 —C3—C4	123.9(4)
PN1H1	119(3)	N1—C3—C4	116.0(4)
C3-N1-H1	117(3)	C3C4H41	111(2)
SC1H11	121(7)	C3C4H42	120(5)
S-C1-H12	104(5)	C3C4H43	103(6)
SC1H13	101(3)	H41—C4—H42	102(5)
H11C1H12	119(8)	H41—C4—H43	116(6)
H11—C1—H13	118(7)	H42—C4—H43	104(7)

1.250, 1.2718 Å, C—C 1.530(5), 7 1.492, 1.5198 Å, C—N 1.338(7), 7 1.351, 1.3178 Å was observed. However, it should be noted that the C3=O3 bond length is close to that of C=O (1.192(5) and 1.210(8) Å) in aldehydes and ketones, 6 and the N1—C3 bond length is less than that of N—C in β -lactams in the fragments

Torsional angles (°) of molecules (1) and (2)				
Molecule (1)				
C1SPO1	- 179.9	SPN1H1	67.1	
C1—S—P—O2	55.7	S-PN1-H2	-84.2	
C1—S—P—N1	- 54.4	O1-P-N1-H1	- 171.5	
P-S-C1-H11	59.1	O1—P—N1—H2	37.3	
P-S-C1-H12	169.5	O2-P-N1-H1	-46.9	
P-S-C1-H13	-54.3	O2PN1H2	161.9	
SPO2C2	57.9	P-O2-C2-H21	-67.6	
O1—P—O2—C2	-59.7	P-O2-C2-H22	43.9	
N1—P—O2—C2	177.8	PO2C2H23	172.4	
Molecule (2)				
C1-S-P-O1	-176.2	O1-P-N1-C3	54.1	
C1SPO2	57.4	O1—P—N1—H1	-130.2	
C1—S—P—N1	-47.9	O2—P—N1—C3	177.8	
P-S-C1-H11	42.1	O2PN1H1	-6.5	
P-S-C1-H12	178.9	P-O2-C2-H21	-100.1	
P-S-C1-H13	-89.9	PO2C2H22	0.7	
SP	73.9	PO2C2H23	112.8	
O1PO2C2	- 47.9	P-N1C3O3	5.6	
S-P-N1C3	-69.7	P-N1-C3-C4	- 174.6	
S-P-N1-H1	106.0	H-N1-C3-O3	-170.2	
		H1—N1—C3—C4	9.6	

TABLE V
Torsional angles (°) of molecules (1) and (2)

C*—NH—C=O (1.388(19) Å).6 The N atom has a planar-trigonal hybridization and the P—N1—C3 angle is somewhat exceeding 120°.

Both molecules have nearly planar moieties. In the (1) it is H12—C1—S—P=O1 and H2—N1—P—O2—C2 and in the (2) it is H12—C1—S—P=O1 and H41 O3

(1)) and 0.163(7) Å (for C2 of (2)). The conformation of these moieties is perfectly described by torsion angles given in Table V. So the H12—C1—S—P and C1—S—P=O1 groups of (1) and (2) have a trans-orientation and the H1—N1—P—O2 group of (1) has a cis- and of (2) a gauche-orientation. Conformation of N1—P—O2—C2 group is trans in both molecules. The angle between the title planes is 85.3° (1) and 90.3° (2).

There are intermolecular P=O ... H—N hydrogen bonds in the crystal structures of (1) and (2). For the P=O1 ... H1—N1 [x + 1, y, z] and P=O1 ... H2—N1 [1 - x, 2 - y, 1 - z] hydrogen bonds of the crystal structure (1) the corresponding interatomic distances and angles are equal to: O1 ... N1 = 2.852(3) and 2.999(3), O1 ... H1 = 2.02(3), O1 ... H2 = 2.20(4) Å, O1 ... H1—N1 = 153(3)°, O1 ... H2—N1 = 174(4)°. Thus the O1 atom of molecule (1) participates in two hydrogen bonds. By the O1 ... H1—N1 hydrogen bonds the molecules form centrosymmetric dimers and by the O1 ... H2—N1 hydrogen bonds they are connected into infinite chains along the a crystallographic axis (Figure 2).

For the P=O1 ... H1-N1 $[x, \frac{1}{2} - y, \frac{1}{2} + z]$ hydrogen bond of the crystal

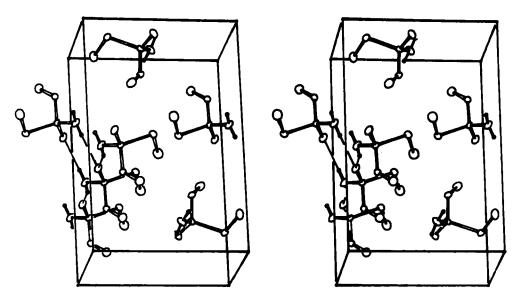


FIGURE 2 A stereoscopic view showing the crystal packing of (1), viewed upwards the a axis with the b axis horizontal and the c axis vertical. Fine lines denote hydrogen bonds.

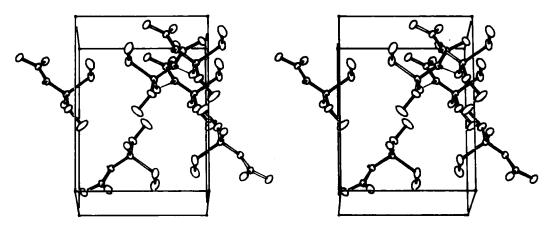


FIGURE 3 A stereoscopic view showing the crystal packing of (2), viewed down the c axis with the b axis horizontal and the a axis vertical. Fine lines denote hydrogen bonds.

structure (2) the corresponding interatomic distances and angles are equal to: O1 . . . N1 = 2.856(4), O1 . . . H1 = 2.25(3) Å, O1 . . . H1— $N1 = 170(4)^\circ$. This intermolecular hydrogen bonding connects the molecules along the c axis (Figure 3).

EXPERIMENTAL

Crystal data for (1). $-C_2H_8NO_2PS$, M=141.13, monoclinic, $P2_1/n$, a=5.374(3), b=9.220(4), c=13.847 (5) Å; $\beta=101.08(5)^\circ$, V=673(1) Å, Z=4, $D_{calc}=1.392$ g·cm⁻³, μ (MoK $_{\alpha}$) = 6.078 cm⁻¹.

Crystal data for (2). $-C_4H_{10}NO_3PS$, M=183.17, monoclinic, $P2_1/c$, a=11.547(4), b=8.545(2), c=8.954(5) Å; $\beta=93.03(4)^\circ$, V=882(1) Å, Z=4, $D_{calc}=1.379$ g·cm⁻³, μ (MoK_a) = 4.879 cm⁻¹.

Data Collection, Structure Solution and Refinement. Intensity data collections were carried out on an automated four-circle single-crystal Enraf-Nonius CAD4 diffractometer (graphite monochromated MoK_a radiation, $\lambda = 0.71073 \text{ Å}$) at -100°C for (1) and at room temperature for (2). Together 1617 (1) and 2262 (2) reflections in the hkl and hkl octants were measured from crystals of dimensions 0.64 x 0.50 x 0.50 mm (1) and 0.90 x 0.10 x 0.15 mm (2) using an ω/θ-scan technique ($2\theta_{max} \le 55^{\circ}$); 1077(1) and 962(2) reflections were considered significant ($I \ge 5\delta(I)$ for (1) and $I \ge 3\delta(I)$ for (2)). The intensities of three standard reflections, monitored every 3600 seconds of X-ray exposure, showed a maximum variation of 2.2% (1) and 0.5% (2). The data were corrected for Lorentz and polarization factors, but not for absorption or extinction. Structures solved by direct methods using MULTAN 11/829 and refined by full-matrix least squares based upon F with weights $\omega = 4F_0^2[\delta^2(I) + (p \cdot F_0^2)^2]^{-1}$ (p = 0.075(1) and 0.06(2)). Scattering factors and anomalous-dispersion correction were taken from International Tables for X-ray Crystallography. 10.11 Hydrogens were located by difference-Fourier syntheses. All atomic positional parameters except that of H23 atom of (1) were refined. Non-H atoms were refined anisotropically, H-atoms isotropically. Final R = 0.049, $R_w = 0.066$ (1) and R = 0.048, $R_w = 0.062$ (2), S = 1.63 (1) and 1.40 (2) for 92 (1) and 131 (2) variables. Largest parameter shift is 0.01 (1) and 0.03 (2) in the final cycle.

REFERENCES

- N. N. Melnikov, Pesticides. Chemistry, technology and application, (Khimiya, Moscow, 1987), p. 399, (Russian).
- P. S. Magee and S. Rafael, U.S. Patent 3309266 (1965); C.A., 67, 10691g.
- 3. P. S. Magee and S. Rafael, U.S. Patent 3716600 (1973) [Int. C1. C07F9/24; A01N9/36].
- 4. P. S. Magee, U.S. Patent 3845172 (1974).
- V. A. Naumov and L. V. Vilkov, Molecular structures of the organophosphorus compounds, (Nauka, Moscow, 1986), p. 132, (Russian).
- F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen and R. Taylor, J. Chem. Soc. Perkin Trans., Pt2, N12, S1-S19 (1987).
- 7. V. A. Denne and R. W. H. Small, Acta cryst., B27, 1094 (1971).
- 8. W. C. Hamilton, Acta cryst., 18, 866 (1965).
- P. Main, S. J. Fiske, S. E. Hull, L. Lessinger, G. Germain, J.-P. Declercq and M. M. Woolfson, MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. University of York, England and Louvain Belgium, 1982.
- D. T. Cromer, International Tables for X-ray Crystallography, Vol. IY, Table 2.3.1. Birmingham: Kynoch Press, 1974.
- 11. D. T. Cromer and J. T. Waber, *International Tables for X-ray Crystallography*, Vol. IY, Table 2.2B, Birmingham: Kynoch Press, 1974.
- C. K. Johnson, ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA, 1976.